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Some experimental results on incompressible viscous fluid flow in the gap be- 
tween two concentric rotating spheres are discussed. The flow field in the spherical 
gap has been studied qualitatively by flow visualization (photographs) and 
quantitatively by measurements by the hot-wire technique. For a wide range of 
Reynolds numbers, the friction torque was measured for several gap widths and 
a relatively simple method of determining the torque theoretically is given. 
At higher Reynolds numbers instabilities appear. Their different behaviour for 
relatively small and large gap widths is demonstrated. For the larger gap widths, 
the different appearance of the Taylor-Gortler vortices, the reason for their 
generation, their regimes of existence as well as their influence on the friction 
torque are thoroughly treated. Detailed information is given on the new effect 
of the dependence of the wavelength of the vortices on the Reynolds number. 

1. Introduction 
Flow of a viscous fluid between concentric rotating spheres has been the sub- 

ject of growing interest in recent years, but most of the publications are limited to 
theoretical treatment of the problem. Among others, there are the papers by 
Bratukhin (1961), Ovseenko (1963), Yakushin (1968, 1969, 1970), Brailovskaya, 
Astafeva & Yavorskaya (1972) and Munson & Joseph (1970) as well as Ritter 
(1973). On the other hand, experimental treatises are sparse. There is one by 
Khlebutin (1968), one by Sawatzki & Zierep (1970), one by Zierep & Sawatzki 
(1 970) and a recent one by Munson & Menguturk (1975). The papers by Khlebutin 
(1968) and Sawatzki & Zierep (1970) deal with results for narrow and medium- 
sized (in their terminology, large) gaps. In  the current paper, the gap sizes are of 
the same order of magnitude. Munson & Menguturk (1975) discussed besides 
medium-sized gaps (in their terminology na.rrow) a wide and a very wide gap. 
Therefore some misunderstandings over the description of the gap size might 
arise, but all authors give quantitative data for the gap geometry, so that no 
errors are possible concerning their results. 

All the authors write in the experimental part of their papers mainly about 
instabilities and related friction-torque measurements. The present paper is part 
of an extensive experimental study of the problem (Wimmer 1974) and tries to 
reconcile the new effects found here with those known already, and to give a 
survey of the whole subject. 
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The entire problem is closely related to the flow between cylinders, but there 
are some significant differences. Because of the rotation of the spheres, one 
obtains a three-dimensional basic flow field. For that reason, the flow between 
rotating spheres is an extension of the well-known contribution of Taylor (1923), 
who studied the motion in the gap between two coaxial rotating cylinders. In  all 
the investigations described by Taylor (1923), Coles (1965), Donnelly (1965) and 
others, the basic flow is only one-dimensional, i.e. a circular Couette flow, whereas 
the basic flow between rotating spheres is fully three-dimensional. There are other 
differences between the two types of flow. For spheres, the centrifugal forces are a 
function of the latitude, and because the centrifugal forces are responsible for the 
instabilities, different types of flow, stable and unstable, exist side by side. 
Another advantage is that there are no unpleasant boundary effects like those 
caused in the cylindrical case by the end plates. That is why conditions postu- 
lated by the theory can be fulfilled nearly ideally in the case of rotating spheres. 

2. Possible configurations and apparatus 
Many configurations are possible €or rotating spheres. The radius and the 

angular-velocity ratios of the spheres may be varied. Figure 1 shows the several 
possibilities. The arrangement in the middle is the general case. Both radii are 
finite and both spheres are rotating, in the same or in opposite directions. In case 
2, only the inner sphere is rotating, the outer one being stationary. If the outer 
radius tends to infinity, one obtains case 1 : a free rotating sphere in an infinite 
medium. Likewise, if the inner radius tends to zero we obtain case 4: a rotating 
spherical container filled with a liquid. The two limiting cases are included as 
well because, as was proved by making comparisons with many appropriate 
experiments, the small region near the equator may be considered as a region 
between two rotating cylinders, approximately, and the vicinity of the pole as 
that above or below a rotating disk in a housing (cf. $5  and figure 14d, plate 4). 
The present paper deals with case 2 only, i.e. the inner sphere is rotating and the 
outer one is at rest. For more details concerning case 1, a free rotating sphere 
in an infinite medium, see Sawatzki (1970). Cases 3, 4 and 5 will be discussed 
in later publications. 

The problems associated with different configurations or with different experi- 
mental conditions for the same configuration, such as no vibrations, low friction 
in the apparatus, flow visualization, hot-wire measurements (oil, air and helium) 
etc., can not be studied with a single set of ampparatus. That is why several test 
arrangements were set up which met the special conditions. Figure 2 shows a 
sketch of the arrangement for the friction-torque measurements. It is the experi- 
mental set-up which was constructed first and had already been used by Sawatzki 
& Zierep (1970), but here the axis of rotation is horizontal, contrary to all other 
experimental set-ups. All the different experimental set-ups are, however, 
basically the same. There is a rotating inner sphere made of aluminium (1  1 )  and a 
transparent Plexiglas spherical outer shell (12) of 80 mm radius, which is kept 
constant for all experiments. The radius of the inner sphere is varied. In  this way 
one obtains gap widths s = R, - R, of 0.5-30 mm and corresponding relative 
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FIGURE 1. Possible configurations. 

gap widths CT = s/Rl = 0.0063-0.60. The inner sphere, and later the outer one, 
is driven by a variable-speed electric motor (6). To measure friction torque, the 
motor is installed as a pendulum (3).  The torque is determined by an attached 
lever (4) and a set of weights (5). The speed of rotation is controlled without 
friction by using a stroboscope (7)  or photo-optics. The temperature is measured 
in order to determine the viscosity of the fluid in the annulus by thermocouples 
or thermistors (10). Air and silicone oils (available a t  Fa. Bayer, Leverkusen, 
trade name M3 to M 1000) of various viscosities, v = 1-1000 cS, were used as the 
fluid. In  this way, and by varying the speed of rotation, a range of Reynolds 
numbers from Re = lo2 to lo6 can be covered. 

For the flow visualization, a small amount of aluminium flakes (typical mean 
dimension is 50 pm and a concentration of about 2 g/dm3 produces good signals) 
is suspended in the fluid; this amount is small enough not to influence the vis- 
cosity or the flow field. For some purposes, like making separate regions of flow 
or the flow development visible, it  is better to employ dye injection. Using this 
technique, i t  is important to inject only a small amount of very concentrated dye 
in order not to disturb the flow field to be observed. Also i t  is important that the 
injected dye has the same temperature and density as the fluid in the annulus. 
The best dye used during these experiments was Ceresblau GN (available a t  
Farbenfabriken Bayer, Leverkusen), which is very efficient and is soluble in 
the silicone oils. Another advantage is that there exists a simple method of 
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FIGURE 2. Experimental apparatus. (1) Pendulum for damping. (2) Zero adjustment. 
(3) Spring suspension. (4) Stabilizer. ( 5 )  Standard weights for torque measurements. 
(6) D.c. motor. (7) Stroboscope. (8) Clutch. (9) Roller bearing. (10) Thermocouple. (11) 
Inner sphere (rotating). (12) Outer sphere (fixed). (13) Sealing ring. (14) Roller bearing. 

F r a m  3. Co-ordinates and notation. V~ = u, va = v,  v, = 20. 



Viscous $uid $ow between concentric rotating spheres 321 

discolouring the oil again. By using a certain amount of animal charcoal and 
then filtering, clear silicone oil can be extracted. 

Before particular results are discussed, some remarks on the co-ordinates and 
notation used should be made. The appropriate co-ordinates are spherical ones. 
Figure 3 shows the co-ordinates and the corresponding notation for the com- 
ponents of the velocity. 

The main parameters influencing the problem are the radius of the inner sphere 
R,, the radius of the outer sphere R,, the width of the gap s, the angular velocities 
wA and w2, the density of the fluid p ,  the dynamic viscosity 7 (or the kinematic 
viscosity v = r ] /p) ,  the temperature T and resulting quantities like the moment of 
rotation M .  In  order to reduce these parameters, dimensionless characteristic 
numbers are formed. These are the relative width of the gap CT = (R, - R,)/R,  = 

s/R1, the Reynolds number Re = R2,wl/v or the Taylor number T a  = (R,sw,/v) 
x (s/R,)+, the ratio of the angular velocities p = w2/wl and the friction-torque 
coefficient I& = M/(&pRZwq). 

3. Flow field between rotating spheres 
The type of fluid flow between rotating spheres depends on the Reynolds num- 

ber and the width of the gap. At very low Re one obtains Stokes flow, whose 
streamlines are circles around the axis of rotation (see figure 4, plate 1). At 
higher Re one will get the fully developed three-dimensional basic flow, with 
streamlines resembling logarithmic spirals (figure 5, plate I ;  cf. Sawatzki & 
Zierep 1970). Close to the inner rotating sphere, the fluid is moving in spirals from 
the poles to the equator. At the equator, it is deflected outwards and moves back 
to the poles again in the vicinity of the outer sphere, also in spirals. The spirals 
join and form a closed flow. Upon increasing Re instabilities appear which will be 
discussed later. 

In  order to obtain quantitative data on this flow, measurements were made 
by the hot-wire technique. For a gap width s = 6.0 mm, the velocity distribution 
over the gap was measured in a meridional plane along three radii (0 = 30°, 
50" and 70"). In  doing so, the probe was traversed in steps of 0.2 mm. Figure 6 
shows the results for several Reynolds numbers for 0 = 50". The circumferential 
and meridional velocity are plotted in dimensionless form over the width of the 
gap. (The radial component of the velocity is very small, except in the neigh- 
bourhood of @ = 0 and 90°, and is not measurable by this method.) The variation 
of the velocity profiles with Re can be clearly seen. At low Re, the two boundary 
layers, the inner one at the rotating sphere and the outer one at the stationary 
sphere, fill the gap. The inner boundary layer is always thinner than the outer 
one. At higher Re, the boundary layers are separated, and in the middle of the 
gap a region rotating like a solid body exists (cf. Khlebutin 1968). The meridional 
velocity approaches zero in this region, which means that the meridional mass 
transport is transferred into layers near the walls. One thus obtains the typical 
behaviour of boundary-layer flow. The friction torque for such a flow is inde- 
pendent of the width of the gap, because only the thickness of the core changes, 
the shape of the boundary layer and the gradient of the circumferential velocity 
close to the walls, which is responsible for the torque, remaining almost constant. 

21 F L M  78 
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FIGURE 6. Components of the velocity u and v for different Reynolds numbers. v' = 
SIR, sin Ow,, u' = u/R, sin Ow,, O = 50°, R, = 74.0 nun, R, = 80.0 mm. -0-, Re = 4800; 
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4. Friction torque 
For rotation of the sphere a t  a constant rate, a rotational moment equal to the 

frictional torque is needed. This torque was measured for several gap widths and 
various Reynolds numbers. For all the measurements the temperature gradient 
was kept close to zero. The friction torque due the roller bearings and sealing 
rings was measured and controlled after every series of measurements. This was 
subtracted from the total measured torque to get the net frictional torque of the 
sphere, and to keep the influence of the friction torque of the bearings a minimum, 
only total torques larger than ten times the friction torque of the bearings were 
accepted. By doing so, an accuracy of about 1 % could be achieved. 

As a result i t  is found that the width of the gap is the parameter characterizing 
the geometry. Yet for all gap sizes investigated there are three distinct flow 
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regimes. (This occurs for relatively larger gaps as well and will be discussed after 
the description of the instabilities.) In  a log-log plot of cM ws. Re, the measured 
points lie on stretches of straight lines, so that the three distinct regimes can be 
clearly observed (figure 7). Sawatzki & Zierep (1970) found that the dimension- 
less torque for the laminar stable flow satisfied cM - l/Re, for the unstable flow 
satisfied cM N 1/Re* and for the turbulent flow satisfied - l/Re). For the 
laminar stable flow (strictly for Stokes flow only), the torque may be calculated, 
approximately, with the gap width as a parameter. For very low Re, only the 
friction terms in the Navier-Stokes equations need be considered, the inertial 
terms being negligible. By using this approximation Kotschin, Kibel & Rose 
(1955, p. 353) derived for the circumferential velocity 

w(r, (D) = (cl r - c2/r2) sin 0, 

written in spherical co-ordinates, and with the appropriate boundary conditions 
for the spherical gap, 

w1 R: sin 0 
rz(Ri - R:) w(r, (D) = (Rg - ~ 3 ) .  

The shear stress corresponding to this velocity component is 

and the moment of rotation is 

21-2 
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FIGURE 8. Critical Reynolds numbers for arbitrary gap width ; Re = R, SW,/V. -, theory, 
KirchgSissner, for cylinders; 0, experiments for spheres. 

This is made dimensionless with +p/R,6 wf to give 

8nywl Ri R; 
cM = $pRi wf (Rt - R,3) 

and finally 16n 1 
cil!! = Re 1 - (R1/E2)3' 

To get this result the assumption Re < 1 is made, but surprisingly, for narrow and 
medium-sized gaps it holds also for higher Re in the whole laminar regime up to 
the points of transition. For very wide gaps, investigated by Munson & Men- 
guturk (1 975), no vortices in the region of transition could be observed. Further- 
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FIGURE 9. Friction torque for arbitrary gap width. Comparison of theory with experiment. 
----, calculation, Re < 1. Experiments: 0 , s  = 2mm; 0 , 8  = 4mm; A , s  = 6mm; 
v, s = 12 ~qm; 0, 8 = 30mm. +, points of transition with Kirchgassner's theory for 
cylinders ; 0, W , A, 7 ,  +, experimental points of transition for spheres. 

more they found that the torques measured for these gap sizes do not lie on 
stretches of straight lines -up to the transition points, but separate from the 
straight line at Reynolds numbers lower than the critical value and tend to be- 
have more like results for a free rotating sphere, as shown in figure 10. In  the 
unstable regime, the torque is independent of the width of the gap, hence the 
measured points for all these gap sizes lie on one straight line. An explanation of 
this fact is provided by the separation of the inner and outer boundary layer as 
mentioned above. This means that the points of transition from the laminar 
stable flow to the unstable flow are the intersections of the calculated straight 
lines for Be < 1 and the straight line formed by the results of the experiments for 
the unstable regime. 

On the other hand, the values of the critical Taylor and critical Reynolds 
number are well known for a cylindrical geometry from Taylor's (1923) theory 
for small gaps and from Kirchgassner's (1961) theory for arbitrary gap widths. 
Both theories are derived for rotating cylinders, but the experimental resulta 
show that they are valid for the case of rotating spheres too (see figure 8). Using 
these facts, for all the gap widths investigated a simple method of determining 
the torque can be given. 

Figure 9 explains this method. Using the equation derived above, the torque 
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FIGURE 10. Friction torque of a free rotating sphere. - - - -, calculation, Re Q 1, 
-, theory for cylinders, Kirchgiissner ; 0, experiment, Sawatzki. 

for laminar stable flow may be calculated for arbitrary gap widths. The next step 
is to calculate the critical value of the Reynolds number from the theories of 
Taylor and KirchgSissner. Now, if one marks these Reynolds numbers on the 
corresponding calculated straight lines, the points of transition in the torque 
diagram will be obtained. The line through all these points (here marked with a 
cross) is the straight line on which lie all the measured points for the unstable 
flow. The agreement between this theoretical method and the experiments is 
remarkable. 

On increasing the gap width by increasing the radius of the outer sphere, i.e. as 
RZ-+w, one obtains a free rotating sphere in an infinite fluid. In  this case the 
straight lines determined theoretically are the asymptotes to the torque of such a 
sphere (figure 10). This is one limit on this method, the other is the onset of 
turbulence. The significance of this relatively simple method is as follows: it 
allows one to obtain the torque for rotating spheres over a wide range of Re for all 
medium and narrow gaps without the trouble of taking measurements. 

5. Instabilities 
The basic flow in a spherical gap is three-dimensiona,l and forms spirals. Passing 

the critical Reynolds number causes disturbances to the basic flow. The imme- 
dia.te neighbourhood of the equator can be regarded approximately as a region 
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between coaxial cylinders. Therefore, here disturbances are the same as those 
Taylor observed in the gap between rotating cylinders, namely regular closed 
vortex cells. Because Gortler (1940) obtained the same vortices for the flow along 
concave curved walls, we call them Taylor-Gortler vortices. 

The first pair of Taylor-Gortler vortices appears at the equator. For the 
small-gap case, i.e. g < 0.1, more vortices are added in the direction towards the 
pole with increasing angular velocity, but this region is limited to a zone near the 
equator. The rest of the flow remains undisturbed even if Re is increased almost 
to the onset of turbulence (figures 11 a-c, plate 2 ) .  Because the Taylor-Gortler 
vortices are nearly square in cross-section, and because they fill the whole gap, 
their wavelength A, i.e. the distance between two vortices, is related to the width 
of the gap : h = 2 s. Accordingly, the vortices broaden as the gap broadens, and in 
the case of a small gap, the wavelength remains constant for all Re (figures 
1 1a-c). For medium-sized gaps, i.e. cr 2 0.1, other conditions prevail and will be 
discussed later, in Q 8. If for small gap widths Re is further increased the vortices 
become wavy (figure 11 d, plate 2) before the whole flow changes to a turbulent 
one, but still with a clearly visible structure. 

For all gap sizes discribed here, two rules should be stated before the case of a 
relatively large gap width is discussed: first, the instabilities always develop in the 
equatorial plane, and second, the broader the gap the smaller the critical Reynolds 
number. 

In  the case of a relatively larger gap width, i.e. cr 3 0.1, the behaviour of the 
vortices is much more complicated. For these large gaps, instabilities appear, if 
at all, only in the region near the equator. Here, by increasing Re no more vortices 
are added. But surprisingly one obtains five different modes of flow in the super- 
critical region, all existing a t  the same Re. Neither Khlebutin (1968), for g = 0.19, 
nor Munson & Menguturk (1975), for cr = 0.135, reported different flow con- 
figurations in the unstable regime, but they are clearly detectable and repro- 
ducible. These modes, already described in part by Sawatzki & Zierep (1970), 
will now be discussed briefly. 

One mode exists in the supercritical region with two vortices rotating in 
opposite directions on each side of the equator (figure 12, plate 3). The axes of the 
vortices are parallel to the equator. In  the equatorial plane, the flow is directed 
outwards, so that to an observer it looks like a source, and because this mode of 
flow behaves as is expected, i t  is called the ‘normal’ one. The rest of the flow 
remains undisturbed. For further discussions this kind of unstable flow will be 
called a double vortex or mode IV. By increasing Re,  this mode is changed into a 
different one having only one vortex on each side of the equator. 

This mode, the single vortex or mode 111, can also be obtained from the laminar 
basic flow (figure 13, plate 3). Again, the axes of the vortices are parallel to the 
equator. But the single vortex is rotating in the opposite direction to the double 
one, so that the flow in the equatorial plane is now directed inwards and to an 
observer it looks like a sink. At first glance, this behaviour is astonishing. At  the 
equator the centrifugal forces are a maximum and yet the fluid is travelling in the 
opposite direction. An explanation of this fact can be obtained by considering the 
undisturbed flow between the vortex and the pole, which induces the rotation of 
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the vortex and forces it into this direction. The single vortex has the lowest 
critical Reynolds number, which means. that it is the fist mode to appear. It is 
also the most stable one, because it still occurs at very high Reynolds numbers 
close to the onset of turbulence. 

Both of these kinds of supercritical flow, mode I V  as well as mode 111, are 
steady ones with the axes of the vortices parallel to the equator. The next two 
possible modes are unsteady variations of mode IV  and mode 111. These modes, 
an oscillating double vortex, named mode Va, and an oscillating single vortex, 
named mode V b ,  are quite similar and appear under similar conditions. Here the 
axes of the vortices are no longer parallel but inclined to the equator (figures 
14a, b,  plate 4) and the vortices penetrate this plane. Since the axes of the vortices 
now end in the midst of the flow field, single spots of vorticity are hurled off and 
travel to the poles. The whole process is periodic. 

There is another, fifth mode of flow in the regime of supercritical Reynolds 
numbers. Surprisingly, no vortex and no disturbance at all will appear, though 
the critical Taylor number, which characterizes the transition from laminar 
stable to laminar unstable flow has been well exceeded. In  the whole range of 
Re, except during the spin-up procedure, no disturbances are visible and the 
entire flow is quite similar to the laminar basic flow (figure 14c, plate 4). On the 
other hand, this mode is not laminar stable in the common sense because the 
friction torque for this mode differs from the laminar solution cM - 1/Re and 
resembles the boundary solution l& N 1/Rei for laminar unstable flow. Purther- 
more, during the generation of this kind of flow, one can see a trace of a vortex 
in the vicinity of the equator for a very short time. This vortex ring is very quickly 
carried to the poles by the three-dimensional flow field, but is clearly visible. This 
mode of flow exists even a t  very high Re, and the character of the flow will not 
change in the turbulent region up to the limit of the present experiments (Re 
108). This time, disturbances are induced by a spiral vortex around the pole, 
sometimes called a Stuart vortex, whose arms extend down to the equatorial 
plane at high Be (figure 14d, plate 4). The spiral vortex appears only at high 
angular velocites, and even at very high Re in the turbulent regime, the structure 
of the spiral vortices is very clearly visible. This vortex is steady and can exist 
together with each of the different modes of instability in the equatorial region. 
But these spiral vortices are completely different from the vortices of the Taylor- 
Gortler type in the equatorial region. The pole vortices are all rotating in the same 
direction and their axes form logarithmic spirals at a constant angle of approxi- 
mately 1 2 O  to the circumferential direction. Since the basic flow also forms spirals, 
but with another angle, the two types of spiral cross each other and form an angle 
of about 30". This system of spiral vortices around the poles of a rotating sphere is 
comparable to the vortices which appear in the gap between a rotating disk and a 
stationary housing. Here one obtains exactly the same configuration in the three- 
dimensional flow and the angles are now about 14" and 30°, respectively (cf. 
Wimmer 1974). 

For the rotating spheres, another interesting flow configuration exists. As 
mentioned above, the spiral vortex around the pole can appear together with 
each of the different equatorial instabilities. But, for a certain range of Re, the 
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FIGERE 15. Friction torque for relatively large gaps. B = 0.18, R, = 67.80 m, 
R ,  = 79.95mm. 

two types of instability are separated. That is why instabilities of the Taylor- 
Gortler type can be obtained at the equator, followed by a region of undisturbed 
flow and spiral instabilities around the poles, i.e. for rotating spheres a stable 
flow regime and two different types of instability exist side by side. When the 
arms of the spirals extend down to the equatorial plane, at higher Re, the two 
different types of instability overlap and influence each other. 

All the instabilities described above are real instabilities, ' stable ' ones, say, 
because vibrations from outside have no influence on the form or the behaviour 
of the vortices once the vortices are fully developed. It is reasonable that the 
different modes of flow influence the friction torque. These differences in the 
friction torque may be measured with clarity. CM for the mode with one vortex is 
about 2 yo less than that for the mode with two vortices on each side of the equa- 
tor. For supercritical flows with vortices the torque measured is 10 yo higher than 
without vortices (figure 15). Even the spiral vortex around the pole influences the 
friction torque. Consequently, the torque above Re = 5500, at which, for example, 
the spiral vortex for a 12 mm gap appears, is always higher than the torque one 
would get for a flow without that spiral vortex. Therefore the characteristic 
Reynolds numbers describing the transition from one mode of flow to another 
may also be determined from friction-torque measurements. These transition 
data are in very good agreement with those obtained by flow visualization. 
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6. Regimes of existence 
As mentioned above, all five modes of instability can occur at the same Re 

but each has a different regime of existence; that is, their first appearance and 
subsequent disappearance occur at different Re. This behaviour is similar to that 
described by Coles (1965) for transitions in circular Couette flow. For rotating 

FIG~RE 16. Regimes of existence and possibilities of transition for = 0.18. - -, mode I; 
-.-,modeIII; ----, modeIV; -..-, modeVa;-....- , mode V b ;  x x x x , all modes with 
spiral vortex. 
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spheres the largest regime of existence is observed for the mode without any 
vortex. It appears last, at a higher Re than all the other modes, but exists up to 
the boundary of the present experiments at Re 2 los. A large regime is also 
occupied by mode 111, one vortex on each side of the equator. This mode is the 
first of all the modes to appear in the unstable regime and disappears a t  Re = 
20000 by changing into mode I after all remaining modes have merged into it. 
The regimes of existence of the remaining modes are shown in figure 16. The 
Reynolds numbers given in this figure are only valid for a gap width of s = 12 mm, 
i.e. u = 0.18. For other gap widths one obtains the same behaviour, but all the 
data for transition, branching etc. correspond to a smaller Re the broader the gap 
and vice versa. 

Also of great interest, but much more complicated, are the different transitions 
from one mode to another. Several possibilities of transition are observed for the 
different modes. As figure 16 shows, mode V a ,  for example, has three different 
possible ways of transition into two different other modes, and mode IV  has two 
observed transitions into the same mode. Another interesting thing is that the 
spiral vortex around the pole always appears a t  Re = 5500, i.e. the first appear- 
ance and the existence of this spiral vortex are independent of the different modes 
of instability in the equatorial region. 

7. The generation of the different modes of flow 
In  the case of relatively larger gap widths the observations of different modes 

of instability all existing a t  the same Re is one of the most astonishing phenomena. 
It is therefore important to know how these different modes of flow are gen- 
erated. The different modes can be obtained either by a transition from one mode 
to another or directly from the undisturbed laminar basic flow. Therefore i t  is 
obvious that different initial conditions are needed to get these different modes of 
instability. That is, in the experiment, for each mode a certain acceleration of the 
inner sphere is needed to get the angular velocity corresponding to the critica1 
Reynolds number. Consequently, the appearance of the different modes of flow 
depends only on the time needed to reach the Reynolds number for an unstable 
flow. 

The following discussion may explain this fact. Each of the different modes of 
flow needs a certain amount of energy to develop or to exist, as is shown by the 
friction-torque measurements, and the transition from the laminar stable to an 
unstable flow is a transition from one distribution of energy to another. That is, 
each unstable mode of flow is associated with a certain amount of energy and for 
the transition a particular time is needed also. By passing through a certain 
regime very quickly, i.e. with a large acceleration, the viscous fluid flow, owing to 
its inertia, is unable to follow this fast change and hence the associated mode of 
flow has no time to develop (cf. mode I). But if the rate of change is slow, i.e. small 
acceleration, or if there is even a halt a t  a certain level of energy, the associated 
mode of flow has sufficient time to develop and to stabilize. Hence, the time- 
dependent supply of energy, i.e. the rate of change before reaching the super- 
critical Reynolds number, is responsible for the mode of flow that will appear. 
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Accordingly, there are different regimes of acceleration for the different modes of 
flow. 

By many measurements, these different regimes of acceleration could be 
deflned and therefore it is possible to predict what kind of flow will appear. Figure 
17 shows these experimental results on a plot of Re vs. the dimensionless time 
T ( =  tv/R,s, where t is the measured time). Because the geometry is kept con- 
stant and the viscosity does not change during the short interval of acceleration 
(4 1 s), Re is a measure of the angular velocity. The curves shown in the diagram 
bound the regions of appearance of a certain mode, Hence all accelerations 
greater or smaller than those in a particular region generate another mode of 
flow. In  the space between the regions for mode I11 and mode IV no clearly 
defined modes of flow are observed. Distinct modes seem not to be able to stabi- 
lize, and a transition into mode I11 or mode IV is observed. 

Another result of these measurements is that attention need be paid only to the 
acceleration in the immediate vicinity of the critical Reynolds number for the 
generation of a distinct mode of flow. Accelerations outside this small critical 
region have no influence on the further development. In  figure 17, quantitative 
data for the acceleration 6~ are given. From these measurements, a prediction of 
the appearance of each mode is possible. This may give a basis for further theore- 
tical considerations. 

The existence of these five different modes of flow a t  the same Re verifies 
experimentally the different solution branches of the Navier-Stokes equations in 
a very clear and impressive way. 

8. The dependence of the wavelength on the Reynolds number 
Alongwith these experiments for relativelylarger gapwidths, there is alsoa new 

effect with respect to the wavelength of the vortices. For singly periodic Taylor- 
Gortler vortices there is no dependence of h on Re, as for example Burkhalter & 
Koschmieder (1973, 1974) showed. However, Coles (1965) detected a change in 
wavelength for a doubly periodic flow. A decrease in the size of vortex cells with 
increasing Re, as reported by Snyder (1969) and also measured by Burkhalter & 
Koschmieder (1973), is due to end effects: growth of Ekman cells caused by 
rotating end plates of the cylinder, which results in a decrease in size of the celh in 
between. These end effects can not occur for the flow between concentric rotating 
spheres. For all wavelength measurements in a cylindrical gap only a decrease 
with Re was observed and Burkhalter & Koschmieder (1973) deduce that this 
would not be possible if the cylinders were infinite. 

Thus, for all experiments with cylinders (provided that the initial conditions 
are comparable) , the wavelength for singly periodic vortices remains constant 
for constant gap width for all Re. This rule does not hold for the vortices in a 
relatively larger spherical gap. As may be expected, the wavelength is different 
for the different modes of instability at the same Re, but that the wavelength of a 
single mode (same initial conditions) is variable is a novelty. Here, for the first 
time for singly periodic Taylor-Gortler instabilities, the wavelength of the 
vortices is no longer independent of Re. As figure 18 shows, this effect is quite 
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pronounced. These measurements have been made for the case of a single vortex 
on each side of the equator. The dimensionless half-wavelength A' = A/2st 
is plotted vs. Re. At A' = 1, the latitudinal extent of the vortex is equal to the 
width of the gap. Therefore i t  is easy to see that the width of the vortex can be 
smaller or greater than the gap width. Initially, the vortex is relatively small, 
but when Re is increased i t  grows quickly, reaches its maximum, becomes smaller 
again, and finally remains nearly constant. Consequently, large wavelengths are 
obtained only at low to medium Re. This effect is subject to the rest of the three- 
dimensional flow, which compresses the vortex more or less depending on the 
angular velocity. I n  this way, variations in wavelength of more than 100 % have 
been observed (figure 19). 

Figure 19 shows the development of the wavelength in the case of a transition 
from one mode of flow to another. If in the lower range of Re the angular velocity 
is changed very carefully and slowly, the course of the wavelength curve is also 
changed. With increasing Re the width of the vortex finally reaches a value which 
is above the maximum of the steady curve. Exactly a t  this point of greatest 
wavelength (A' = 1.3), located a t  Re = 1060, the single-vortex mode (mode 111) 
changes into the mode with two vortices on each side of the equator (mode IV). 
Simultaneously, the width of the vortex near the equator is reduced to A' = 1.05. 
But on increasing Re the wavelength again increases and then diminishes after 
reaching a maximum at A' = 1.2. The smallest value of the width of the vortex 
near the equator is measured with A' = 0-54 for Re = 3950, i.e. the Re of the 

t By definition, the wavelength h equals the width of a double vortex, but in the dia- 
grams,  only +A is used, because this quantity can be measured with a high degree of 
accuracy. 
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FIGURE 19. Development of the wavelength for transition from mode I11 to mode IV. 
u = 0.18,h' = h/2 8. 

transition from mode IV to mode 111. At this point, the width of the vortex 
suddenly jumps to the significantly higher value of the width of the gap. The 
further development is similar to that described in figure 18 for mode 111, i.e. 
the wavelength tends asymptotically to a constant value. 

The diagrams apply only to the development of the vortex near the equator, 
the more distant vortex of mode IV remaining almost unchanged with A' = 0.9. 

The phenomenon of the different wavelengths for different Re, which was 
observed here for the first time, has been investigated not only qualitatively, but 
also quantitatively. It can be explained only by an interchange of the secondary 
flow and the three-dimensional basic flow. The sudden change in the wavelength 
happens exactly a t  those Re at which the transition from one mode to another 
takes place. So a third, independent method of determining the transitions, 
besides flow visualization and friction-torque measurements, is available which 
gives exactly the same data. Precisely at these sudden transitions, i.e. a t  the 
points of maximum or minimum width of the vortices, the vortices become either 
too large (A' = 1.3) or too small (A' = 0.54) to be stable. This change in the wave- 
length and the resulting deformation is probably the reason for the transition 
from one mode to another, because the vortices always jump back to a width 

equal to the width of the gap. 

The research reported in this paper has been supported by the Deutsche 
Forschungsgemeinschaft (DFG). 
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FIGURE 4. Concentric circIes for the Stokes flow. u = 0.066, R, = 75.0 mm, R, = 80.0 mm, 
Re = 10. 

FIGURE 5. Spirals for the three-dimensional flow. u = 0.066, R, = 75.0 mm, 
R, = 80.0 mm, Re = 2250. 
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FIGURE 11. Taylor-Gortler vortices. R, = 80.0 mm. (a )  (T = 0.0133, R, = 78.95 mm, 
H e  = 27000, T a  = 41.6. ( b )  u = 0.046, R, = 76-5 mm, Re = 7900, Ta = 77.3. (c) (T = 

0.066, R, = 75.0 mm, Re = 7100, Ta = 122. (d) The axes of the vortices become wavy; 
(T = 0.046, R, = 76.5 mm, Re = 10400, Ta = 101. 
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FIGURE 12. Sketch and phot,ograph of mode IV; CT = 0-18, R, = 67.80 mm, 
R, = 79.95mm. 

FIGURE 13. Sketch and photograph of mode 111; CT = 0.18, R, = 67.80 mm, 
R, = 79.95mm. 
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FIGURE 14. (a)  Mode V a :  oscillating double vortex. (a) Mode V b :  oscillating single vortex. 
(c) Mode I: supercriticd flow without disturbances. (d) Spiral vortex around the pole. 
(T =:0.18, R,  = 67.80 mm,'R, - = 79.95 mm. 
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